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Why an Uncertainty Calculus? 
 • Models are always approximations and simplifications of 

complex situations due to  inherent limitations in knowledge 
and resources.    
 

• Models are therefore in error, subject to revision and 
expansion if/when we are able to expand our knowledge and 
resources. 
 

• We want to make decisions and predictions.  Yet these will be 
intrinsically uncertain, as they are based on models that are 
incomplete and subject to unpredictable influences. 

 

• Nonetheless, we want to make our decisions within a 
framework that is logically defensible and extensible. 

 



Comparison of Uncertainty Calculi 

• Probability Theory:  a definite state of the world exists 
after an experiment is performed.  We are uncertain 
about the result of the definite outcome of the 
experiment either because the outcome is hidden from 
us or is to be performed in the future.  
 

• Quantum Logic: prior to wave function collapse the 
world is not in a definite state. 
 

• Fuzzy Logic: no agreement on an unambiguous 
definition of an experimental outcome exists in the first 
place. 
 



Assumptions of Probability Theory 
   
• A definite state ! of the world =   is the case or will be the case. Is also called 

the universe, the sample space, the space of experimental outcomes,   
 

• The “world”    is referred to by a variety of names, including the universe, the 
sample space, the state space, the space/set of (underlying) experimental 
outcomes …  

 
• We are uncertain about an event E occurring in the world either because the 

event is hidden from us or is to be performed in the future.   
 

– This uncertainty is encoded as the probability P(E). 
 

• Probabilities Satisfy the Kolmogorov Axioms. 
 



Fundamental First Steps in  
Probability Calculus 

• Create a model world   of a domain of interest. 
 

• Assume that all possible states, ! , of the  
domain  of interest are unambiguously defined 
and contained in the model world, ! 2  . 
 
– !  = “state of the world” 

 

• Measurements are taken of the world  and one 
and only one experimental outcome ! occurs.  
The unique experimental outcome ! is called an 
instantiation of the world .   



Fundamental First Steps in  
Probability Calculus 



Definition of a Random Event  A ~ \\ ® 

®(! ) = \ ! sat is̄ es property ®"

®(! ) = \ ! sat is̄ es property ®"®(! ) = \ ! sat is̄ es property ®"

®(!) = “! satisfies property ®” = 0-1 Boolean random variable 

     
Trivially      ®(!) = 1    iff   A = { ! |  ® (!) = 1 } ½  

 

Equivalence between propositional logic & subset algebra: 

 
Logical OR:   ® Ç ̄\\b     iff   A [ B;      Logical FALSE: false iff   

  
Logical AND:  ® Æ b ̄   iff  A Å B;       Logical TRUE:  true iff   

 
Logical NOT:  ¬®   iff   Ac =  – A 

 
(More rigorously, ®(!) Ç ̄\\b(!)  iff ! 2 A [ B , etc.) 

 

\ 

 

®(! ) = \ ! sat is̄ es property ®®(! ) =



Definition of an Event E – Cont. 

An event E is a subset of possible states of  

our model world . 

 
For the die example a possible event E ½  is 

 
 “Even” = E = { ! | e(!) = “! shows an even number of dots”} 

 

Thus if the outcome of a measurement of the world results  
In any single outcome ! 2 E we say that the event  

“Even” has occurred. 

 

 
 



Probability Measure as a  
“Soft” Truth Function 

• Regular logic has a “hard” 0-1 truth function T which acts on propositions (“did the 
event A occur”) and returns a definite truth value of 1 if the proposition is true (i.e., 
is the case) and 0 if false  
 
                                       T(A) = 0 or 1  for all events A ½  

 

• T(A) = 1 if and only if ! 2 A.  T(A) is known as the indicator function of the event A.  
 

• However we are generally ignorant about the actual state of affairs (i.e., what is the 
case) before, or even after, a measurement has been performed on the world. (We 
are ignorant until we are made aware of the outcome of the experiment.) 

 

• We represent our ignorance about the occurrence (or not) of the event A in terms 
of a “soft” truth function (or belief function) known as a probability 
 
                  0 ≤ P(A) ≤ 1 for all events E ½  ,   where P(A) = E{T(A)}  
 



Properties of Probability P  
  = universal set, of exhaustive, mutually  exclusive model world states !.  

 

A, B, C, D, … are events in the model world   (i.e. subsets of )  

 

P  is a real-valued function of events satisfying  

 

The 3 Kolmogorov Axioms 

 
1.  0 ≤ P(A)   for all  events A ½        

  

2.  P() = 1 

 
3.  P(A [ B) = P(A) + P(B)  iff  A Å B =  

A 

B 

 



These Axioms are Deceptively Simple 
The entire edifice of modern probability theory is built up from 

these three axioms.  An equivalent restatement is: 
 

3 Kolmogorov Axioms, Version 2 

 
1.  P(A) ≤ 1  for all A ½  

  

2.  P() = 1 

 
3.  P(A [ B) = P(A) + P(B) – P(AÅB) 
 

 

 

de Finitti (see the “coherence” discussion below, which is taken from the 

discussion in [Russell 2003]) has shown that if you are betting against 

someone who uses a probability calculus violating condition 3, then you 

can beat him every single time you bet, not just in the long run. 
 

 

A 

B 

A Å B 



Simple Consequence of the Axioms 
Here are some consequences and properties of the Kolmogorov Probability 

Axioms which are commonly explained in introductory probability courses.  You 

should be able to readily prove them using the axioms and some basic properties 

of (naïve) set theory. 

 
A.   P(Ac) = 1 – P(A).  Hint: Note that  = A [ Ac  with A and Ac disjoint.  

 
B.  P(;) = 0.  Hint: Use the result of A. 

 
C.  If A ½ B, then P(A) ≤ P(B).  Hint: Note that B = A [ (B Å Ac). 

 

D. The two versions of the Kolmogorov Axioms are equivalent. 

      

 

 



Kolmogorov Axioms Yield “Coherence” 
de Finitti assumes that the degree of belief that an agent has in a 

proposition a  corresponds to the odds at which it is indifferent to a bet 

for or against a. (Because in the long-run the agent expects to break 

even.)  

 

Assume that Agent 1 holds the following degrees of beliefs about events 

involving propositions a and b:   

 
                         P(a) = 0.4       P(a Æ b ) = 0.0 

                         P(b) = 0.3       P(a Ç b)  = 0.8 

 

Agent 1’s beliefs clearly violate the second version of Axiom 3.  These 

beliefs are “incoherent” in the sense that a so-called “Dutch book” betting 

strategy is possible. 

 

Figure 13.2 taken from [Russell 2003] shows that if Agent 2 bets $4 on a, 
$3 on b, and $2 on ¬ (a Ç b)  then Agent 1 always loses regardless of 

the outcomes for events a and b.  



Example from Russell & Norvig 2003 

Agent 2 bets $4 on  a,   $3  on  b,  and $2 on ¬ (a Ç b) 

 
Agent 1 bets $6 on ¬ a, $7 on ¬ b, and $8 on  a Ç b 

 



Probability Logic & Conditional Probability 

Joint Probability of events A and B: 

 
          P(A,B) = P(A Å B) = P(B Å A) = P(B,A) 

 

The conditional probabilities P(A|B) and P(B|A) are defined by 

 

                    P(A|B) P(B) = P (A,B) = P(B,A) = P(B|A) P(A)   

 

Or, assuming that P(A) and P(B) are nonzero, by  

simple rearrangement we obtain the two “inverse forms” of 

 

Bayes’ Rule for Events: 

 

P ( A jB ) =
P ( A;B )
P ( B )

( | ) ( ) ( | ) ( )
and   ( | ) ( | )

( ) ( )

P B A P A P A B P B
P B A

P A
P A B

B P
 



Conditional Probability for Events A 

A 

’ =  B 

A’ = A Å B 

 

( ) ( ')
'( ')

( ) ( ')
( | )

P A B P A
P A

P B P
P A B






( | ) ( ) 1

( | ) '( ) 0

( | ) '( ) 1

( | ) 0 if

( | )

0

( )

P A B P A

P B P

P B B P

P C B C B

P A P A

   

   

  

   

 



Conditional Probability for Events A 

’ =  B 

A’ = A  

 

Suppose A ½ B (i.e., B is necessary, 

but not sufficient, for A) then, since 

P(B) ≤ 1, 
 

 

 

 

Showing that although necessity does 

not guarantee  A, it does make it more 

likely. 
 

 

( ) ( )
()

( )
| )(

1

P A P A
P A

P B
P A B  



Conditional Probability for Events A 

A 

’ =  B 

A’ = A Å B = B  

 

Suppose now B ½ A, so that B is 

sufficient for A (i.e., B guarantees A) . 
 

Then 
 

 

 

(
( 1|

)
)

)

(

P B
P

P
A

B
B  



Independence of Events 

Two events A and B are said to be independent , A      B , iff  

 

                        P(A,B) = P(A) P(B) 

 

This is equivalent to the condition, 

 

                           P(A|B) = P(A) 

 

and to the condition, 

 

                           P(B|A) = P(B) 

 

I.e., all three of these conditions are equivalent.  

 

If A and B are not independent, they are said to be dependent. 





Extremes of Dependence  

A 

B 

 

A and B are dependent 

 

P(A) > 0 while P(A|B) = 0 

 

Given B, event A is almost surely impossible 

A 

B  
 

A and B are dependent 

 

P(A) < 1 while P(A|B) = 1 

 

Given B, event A is almost surely a certainty 

Dependence of A and B means you would change a 

bet based on knowledge of probabilities regarding the 

occurrence of A if you where given knowledge of B. 



Independence 

P(A) = 0.5 

P(B) = 0.5 

 
P(A Å B) = 0.25 = P(A) P(B) 

 

P(A|B) = 0.5 = P(A) 

P(B|A) = 0.5 = P(B) 

Independence means you would not change your bet. 

 

Note that knowledge of B does give you knowledge of A 

even though B and A are independent (so that you would not 

change your bet, which is based on probabilities). 

A 

B 

 

Events A and B are independent. 



Bayes’ Rule for Events 
As noted above, the symmetric statement of conditional probability, 

 

                     P(A|B) P(B) = P (A,B) = P(B,A) = P(B|A) P(A)   

 

Is easily massaged into (one variant of)  

 

 

                Bayes’ Rule: 

 

 

Bayes’ Rule tells us how our prior belief as to the event  A  being the case, as 

encoded in the a priori, or prior, probability P(A), is updated as a resulted of 

being privy to the fact that the event B is observed to be the case.   

 

We refer to P(B|A) as the likelihood of A given B—it gives the degree to which 

the validity of A being the case is supported by the experimental evidence 

accrued as a result of observing B. 

( | )
|

)
)

)

(
(

(P B A P
A

A
P

P
B

B




Definition of a Random Variable X 
A random variable X is a real-valued (or complex-valued) 
function of experimental outcomes !: 

 
 For all ! 2 ,  X (!) = x 2 Reals (or Imaginaries) 

 
We usually get sloppy and don’t carefully distinguish between  

the random variable X and the value x, denoting both by x and  

relying on context to keep the two very different meanings  

straight.  This can cause beginning students much confusion. 

 

Because it is a function, X must be single-valued.  Furthermore, X is a total  

function, meaning that it is defined everywhere on its domain .   

 

This means that X induces a disjoint partition of . In this manner 

a measurement of X yields information which reduces uncertainty about  
which value of ! is the instantiated experimental outcome. 



Random Variables Naturally Define Events 

{ X = x } = { ! | X(!) = x } ½  

 
{ X ≤ x } = { ! | X(!) ≤ x } ½  

 
{ X < 1 } = {X > - 1} =  = the event “always true” 

 
{ X  ≥ 1 } =  = the event “never true”  

 

Etc. 
 

 



Random Variables (RVs) 
It is convenient now to move to events defined by the values taken by  

random variables.  (See the first example of the previous slide.) 

 

Since an event A corresponds to the Boolean 0-1 random variable (or indicator 
function) ®(!) that takes the value 1 iff  A occurs, this results in a more general 

(and more convenient) form of Bayes Rule. 

 

To simplify the discussion, in the remainder of these slides assume that our 

random variables take on a finite number n of distinct, discrete possible values 

(n = 2,  in the case of boolean random variables), 

 

 

 

 

(E.g., in the boolean case the set of admissible values is {0,1}.) 

 

 

 

 

 

 1
( ) , ,

n
x xX x  



RVs & Probability Distributions 
 

 

 

Setting                               

 

Define the (marginal = individual) probability distribution,  

 

 

 

 

Obviously 

   | ( )
i i i

X xA X x    

( ) ( ) ( ) ( )
i i X i i i

p x p x P A P X xp    

(0 ) 1
i i

p p x  



Probability Distributions 
Because the RV X is a total function on the sample space , 

the events Ai , i = 1, … , n, form a disjoint partition of , 

 

  

By induction on the fact that 

 
             P(A [ B) = P(A) + P(B)  iff  A Å B =  

 

we see that a probability distribution must be normalized. 

 

 

 

This is an important result which holds even if X is a 

continuous valued random variable (in which case the sum 

goes over to an integral). 
 

1
, ,

n i j
A A A A i j        

1 1
) ( ) (1 )(

n n
P A P A p pP       



Jointly Random Variables 
 

Suppose we have two random variables X and Y.  With,   

 

 

 

we define the joint distribution                 by 

 

 

 

The sets Cij  (induced by a measurement of X and Y) form a disjoint partition of 

the sample space   which is generally finer than that induced by X or Y alone. 

I.e., measurements of two RVs generally provide more information (in the sense 
of being able to localize the instantiated value of !) than a measurement of just 

one RV alone. 

 

   

   , , and
i i j j ij i j

X x AA B Y y C B    

    ), ) ( , )( ( ) ( )
i j i j i j i j ij

y P X x Y y P X x Y y P A Cp x B P        

)( ,
i j

p x y



Marginalization 
We have  

 

 

 

 

 

 

 

 

 

A process known as marginalization. 

 

Similarly, 

 

 

 

    )     )

    )   )

  )

( , )

( )

j i j j i j

j j

i j j i

i i

i
p x y X x Y y P X x Y y

P X x Y y P X x

P X x

P

x p

        

        

  

 

(( ) , )
j i j

i

p p xy y 



Marginalization 

[Ross 2004] 



Conditional Probability for RVs 
We now define conditional probability for random variables, 

 

 

 

 where  

 

 

 

 

Note that by induction we have the product rule of conditional probabilities, 

 

 

 

For random variables,  the product rule becomes, 

 

 

 

  

 

 

, ) ( | ) ( ) ( | )( , ) ( ( )Y y P X xp x y P X x Y y P Y y p x y p y       

( , ) ( , )
( | ) , ( ) 0

(
( |

) ( )
)

P X x Y y p x y
P X x Yp y p y

P Y y p y
x y

 
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

) ( | ) ( ) ( | ) ( |( ) ( )B C P A B C P B C P A B C P B C P CP A      

( , , ) ( | , ) ( , ) ( | , ) ( | ) ( )p x y z p x y z p y z p x y z p y z p z 



Independence of Random Variables 

Two random variables X and Y are said to be independent iff 

 

                                 p(x,y) = p(x) p(y) 

 

We write              .    Equivalent statements are 

 

                     p(x|y) = p(x)   and   p(y|x) = p(y) 

 

If X and Y are not independent, they are said to be dependent, 

and we write,  

X Y

X Y



Bayes’ Rule For Random Variables 
Note that marginalization can be written as 
 

 

 

 

Bayes’ Rule for Random Variables is then given by 
 

 

 

 

( , ) ( | () ) )(
x x

p x y pp y x p xy   

'

( | ) ( ) ( | ) ( )

( ) ( | '
)

) ( )
( |

'
x

p y x p x p y x p
p

x

p y p y x x
x

p
y 



( )  of 

( | )  of  given  

( | )  of  given 

  ·) giv n ) ( e(

p x prior probability x

p x y posterior probability x evidence y

p

evidence for probability mo

y x likelihood y x

p y del p y






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Bayes’ Rule as an Inference Engine 

                     Deduction 
        (inference to the most likely outcome) 

     Abduction 
(inference to the most  

 likely explanation) 
Assumed causal 

relationship – note 

already the simple 

graph structure.  

    

(Modified from [Bishop 2006]) 

( , )p x yAssume a stochastic relationship, 

( | ) (( ) )
y

p x y p yp x


 

( | ) (( ) )
x

p y x p xp y


  ( | )
|

)
)

)

(
(

(p x y p
y

y
p

p
x

x


( | )
|

)
)

)

(
(

(p y x p
x

x
p

p
y

y
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Example of Inference via Bayes’ Rule 
Classic medical test example  

 

An fast and inexpensive medical test is 99% effective in detecting a very rare, but fatal, disease  

if, in fact, a patient has it.  However, the test has a false positive rate of 2%. If a patient  tests 

positive then he/she has to take a much more expensive, but definitive, test which takes about 

two weeks to process, during which time the patient (understandably) is experiencing some 

anxiety.   

 

If  0.001% of the general population is known to have the disease, what is the probability that a 

patient chosen at random who tests positive on the initial test actually has it? 

 

Solution  

  

Let x = d be the 0-1 random variable that indicates if the patient has the disease and y = t be the 

0-1 random variable that the test result is positive.  Then from Bayes' rule: 

 

 

                              

                             = 99.95%  posterior probability that the patient does not have the disease 

                                even thought the likelihood of the disease given the positive test is 2%. 

 

 

( 1 | 0) ( 0) (0.02)(0.99999)

( 1 | 0) ( 0) ( 1 | 1)
( 0 |

( 1) (0.02)(0.99999) (0.99)(0.0000
1)

1)

p t d p d

p t d p d p t d p
p

d
d t

  


       
 
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